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Abstract

Image classifiers are vulnerable to adversarial perturbations. Previous work [8, 9] pro-
posed restrictions of the feature space as a defense mechanism against Lp-Norm attacks.
In this work we evaluate the claim that adversarial examples are caused by the difficulty
of DNN to learn robust representations. We propose a regularization objective based
on the Euclidean distance between classes in the hypothetical latent space found in the
features of the penultimate layer. Our novel objective increases the size of perturbation
epsilon ε required to generate the aforementioned adversarial examples. We evaluate our
approach and conclude that successful attacks require an exceedingly large perturbation
budget ε that puts into question the true class of the adversarial image. Our approach
is significantly more robust than that of the previous state of the art, and entails an
insignificant fine-tuning of existing models.

1 Introduction

In recent years, deep neural networks (DNNs) have exhibited their superiority over traditional models
in an abundance of machine learning tasks such as image classification. Unfortunately, as DNN models
become more widely deployed, the incentive for defeating and exploiting them by adversaries increases.
Various kinds of attacks can easily manipulate the behavior of these models and impose great difficulty for
users. Some adversarial attacks can purposely sway the output of the network while being imperceptible
to humans [16]. Such adversarial samples pose a serious threat for security- and safety-critical applications.
There is broad evidence in certain domains that adversaries deliberately alter their methods in order to
prevent detection [17, 14].

The inability of existing state of the art models to detect those samples reflects that the best performing
models do not interpret the basic visual principles in a distinctive manner, which in turn can lead the
model to fail in its most critical tasks. Therefore, we require new methods to allow DNNs to learn robust
representations and design systems that are reliable and resilient.

1.1 Adversarial Attacks

Much effort has been put into crafting adversarial attacks [13, 12] and on creating defenses that are more
useful against a specific type of attacks [15]. The rise of such attacks has outpaced the development of
robust defenses. The adversary’s observations of the learning paradigm are what constitutes the inputs for
the attack. There are two settings in which attacks are performed by adversaries. A black-box setting, in
which the adversary’s observation is limited to the output of the model on arbitrary inputs, and a white-
box setting, inwhich the attacker has access to the full model, notably its architecture and parameters, thus,

Preprint. Under review.



he can also observe the intermediate computations at hidden layers and can use all of those to generate its
attacks. The white-box adversary is considered the strongest adversary.

The degree to which an adversarial example is imperceptible from its benign original is usually measured
using Lp-norms, e.g., L0 (e.g., [10]), L2 (e.g., [16]), or L∞ (e.g., [2]). These measures of imperceptibility
are critical for creating adversarial examples and defending against them. Using these measures for the
evaluation of distance between images is not sufficient by itself. Many defenses frequently rely onLp-norm-
based data sanitization methods, aiming to remove poisoned or otherwise anomalous data [11], are still
vulnerable to adaptive attacks, being unable to generalizewell. Thus, they cannot provide a robust solution
against the continuously-adapting adversaries.

1.2 Representation Learning

The performance of most machine learning models depends heavily on the choice of the representation
of the data on which they are applied. A good representation is one that makes a subsequent learning
task easier. Representation learning offers one way of doing unsupervised and semi-supervised learning.
Specifically, we can learn good representations for unlabeled data, and then use those representations in the
same setting to solve the supervised learning problem. The main idea behind this approach is the notion
that learning about the distribution of inputs will aid in learning the mapping from inputs to outputs and
thus enable higher robustness and performance in models. Most representation learning problems face
a trade-off between retaining as much input information as possible and achieving nice properties in the
latent space. Ultimately, we want to incorporate this idea in our task to achieve a representation in latent
space which in turn will be used as an effective input to a final classifier and make the image classification
task easier and more robust against Lp-norm-based attacks.

1.3 Contribution

We propose a learning objective on image classifiers that directly improves robustness. By altering the com-
position of the final feature space, we control the kind of information encoded in this representation that
drives the image’s classification. Our added constraint is a triplet loss with a margin hyper-paramter: each
training sample is encouraged to reside nearby other samples of the same class, separated in Euclidean dis-
tance by those of other classes by a fixed minimal threshold.

2 Background

2.1 Triplet Loss

The triplet loss, endowedwith a distance function, pushes the samples of each class into their own disjoint
clusters. Mao et al. [8] recently proposed a similar line of inquiry that they fashion asmetric learning, since
the triplet loss operates on the notion of a metric. They chose the angular distance in the penultimate
feature space; we employed the Euclidean norm. Our justification is as follows: the Euclidean clustering
has information-theoretic benefits that sprout from theVAE [3] literature. Inharnessing those same results,
we can exploit an existing framework that justifies the minimization between the Euclidean norm of same-
class samples in the latent space.

2.2 Adversarial Attacks

Themain goal of an attack algorithm is to force a trainedDNNtomakewrong predictions using aminimal
perturbation budget. The attacker’s objective can be formalized as follows:

argmax
δ

L (x + δ, y), s.t., ∥δ∥p < ε (1)

Where y is the ground-truth label for an input sample x, δ denotes the adversarial perturbation, L denotes
the loss function, ∥∥p denotes thep-norm, and ε is the available perturbationbudget. In thiswork,we focus
on four recently proposed state-of-the-art attacks, which will be used to evaluate our model’s robustness.
Figure 1 shows some of the perturbed adversarial samples we generated using themethods presented below.
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2.2.1 Fast Gradient Sign Method (FGSM)

One of the first successful attack methods is the fast gradient sign method [2]. The FGSM is a one-step
attacking method. The generated adversarial sample x̃ corresponding to a source input x and true label y
is x̃ = x + ε · sign(∇xL (x, y)). Figure 1a shows some samples we generated using this method.

2.2.2 Projected Gradient Descent (PGD)

The PGD method [7] applies FGSM for several iterations with a step size of γ as xi = xi−1 + γ ·
sign(∇xi−1L (xi−1, y)), and then computes x̃i = clip(xi , xi − ε, xi + ε). It proves to be a strong itera-
tive attack, relying on the first order information of the target model. Figure 1b shows some samples we
generated using this method.

2.2.3 Basic Iterative Method (BIM)

Kurakin et al. [4] propose an iterative variant of FGSM. This method generates an adversarial sample as
x̃i = clipε(x̃i−1 +

ε
i · sign(∇x̃i−1

L (x̃i−1, y)), where x̃0 is the clean image x, i is the iteration number and
clipε(·) is a clipping function to keep x in its domain. Figure 1c shows some samples we generated using
this method.

2.2.4 Momentum Iterative Method (MIM)

MIM [1] is a variant of BIM with an additional momentum term introduced to stabilize the direction of
the gradient. This method generates an adversarial sample as x̃i = clipε(xi−1 +

ε
i · sign(gi)), where x0, i

and clipε(·) are the same as mentioned in section 2.2.3 and gi = µ · gi−1+
∇xi−1

L (xi−1 ,y)

∥∇xi−1
L (xi−1 ,y)∥1

, where µ is the
decay factor. Figure 1d shows some samples we generated using this method.

(a) Sample images generated by FGSM (b) Sample images generated by PGD

(c) Sample images generated by BIM (d) Sample images generated byMIM

Figure 1: Sample images generated by different attack methods

3



3 Experiments

3.1 Dataset

We evaluate our approach over MNIST [6], a popular dataset that is widely used for developing both at-
tacks on DNNs and defenses against them. MNIST is a dataset of 28 × 28 pixel images of digits. The
dataset contains 60, 000 training images and 10, 000 testing images. Our task is to classify images of hand-
written digits into one of ten classes, each representing a single digit.

3.2 Model

We evaluate our method using a convolutional deep neural network architecture. We use a 6 layer Con-
vNet similar to [9]. Our model consists of three convolutional blocks with 32, 64 and 128 filters. Each
convolutional block, consists of two identical convolutional layers, with ReLu activation function. We
use three fully connected layers after the last convolutional layer. The triplet loss function is applied on
the second to last layer. Last layer being the softmax. We implemented our model using Tensorflow 2.0,
which has built-in functionality to make customizing models easier and a flexible ecosystem of tools and
libraries.

Previous work [9, 8] train the model jointly on the Cross-Entropy objective as well as the loss function
they introduce. We found this to be impractical on our experimental results. Thus we train our model’s
triplet loss independently of the softmax cross-entropy loss. We do this by using the stop_gradients
operation in Tensorflow. During training time only, we prevent the softmax layer to update the weights of
the remaining neural network based on the cross-entropy loss.

In practice for larger models that are more difficult to train, we can use a pre-trained model and extract all
layers except the last one. We can use the stop_gradients operation on the softmax layer and fine-tune
the model on the triplet-loss objective with a sufficiently small learning rate as to avoid over-learning.

Block # 1 2 3
Layers Conv(32, 5× 5, ReLu)×2 Conv(64, 5× 5, ReLu)×2 Conv(64, 5× 5, ReLu)×2

Block # 4 5 6 (softmax layer)
Layers Dense(512, ReLu) Dense(64) Dense(10)

Setup. We tune an existing network for 10 epochs, using a learning rate of 10−4 and batch size of 128.

3.3 Adversarial Training

It has been shown that adversarial training can enhance the robustness of DNNs, as recently proposed in
some defense methods [5]. We also evaluate the impact of adversarial training in conjunction with our
proposed defense. For this, we jointly train our model on clean and attacked samples, which are generated
using FGSM (see section 2.2.1) and PGD (see section 2.2.2) by uniformly sampling with an ε value of 0.3.

3.4 Results

The results in Table 1 show that our method significantly outperforms existing schemes by a large mar-
gin. The results also indicate that adversarial training further complements our method and provides an
enhanced robustness.

Table 1: The robustness results of our models.

White-Box Setting
Training No-Attack FGSM BIM MIM PGD

εMNIST = 0.3

Softmax 99.2 34.48 0 0 0
Ours 99.58 69.45 26.52 44.93 95.49
OursPGD 99.46 80.7 50.08 65.73 97.23
OursFGSM 99.5 82.46 50.68 66.77 97.04
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Figure 2 shows our latent space with the adversarial examples shown in it (see key inside the figure).

Figure 2: Our model’s latent space with the adversarial examples shown

4 Discussion & Future Work

We demonstrated the efficacy of the triplet loss in enhancing adversarial robustness. Our empirical investi-
gation yielded an efficient training technique involving the “splicing” of the gradients between a classifica-
tion loss and the aforementioned triplet loss.

Observe the layout of the feature space in Figure 2. By means of our objective function, adversaries need
to traverse a greater distance in order to make it from one cluster all the way to another. Hindered by the
adversarial budget ε that places a constraint on proximity to the original input, large enough adversarial
perturbations are rendered unaffordable.

Moving forward, it would be of utmost significance to test our framework on a most difficult data set as
considered by the state of the art: namely ImageNet. Decent results in that domain would validate our
technique beyond reasonable scrutiny. We are in the process of evaluating the procedure on a ResNet110
model for the CIFAR-10 dataset. The task in this case is to classify images into one of ten object categories:
airplanes, automobiles, birds, cats, deer, dogs, frogs, horses, ships, and trucks. Our aspiration is to obtain
commensurate results on specifically aResNet56model for ImageNet, wherein the task is to classify images
into one of a thousand categories including animals, food, tools, scenes, and activities. With regards to
both of these applications, the baselines and adversarial algorithms have been implemented already. All
that remains is to finalize the models’ training.

5 Conclusion

Evidently and as demonstrated, our triplet-loss objective increases both robustness and accuracy, a rarity
in any adversarial training technique. In order for attacks to be successful in this new regime, the necessary
perturbation norm becomes untenable. The proposed approach is simple and may even be applied to
existing architecture-objective couplings almost ad hoc.
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