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Abstract

Music is an expressive form of art that is generally perceived as the most universal of
all art forms. It combines vocal or instrumental sounds in a harmonious and expressive
way. A significant amount of information lies in a musical composition through variations
of different properties (e.g., tempo). In this project we investigate the use of unsupervised
representation learning techniques to compress musical samples into a low-dimensional rep-
resentation and use it for the task of music genre classification. In our study, we aim to
facilitate the robust learning of disentangled representations (i.e., features like genre) by
increasing the information capacity of the latent code during training. We perform the
training and evaluation of our models using the FMA public dataset1.

1 Motivation

Music is the art of combining tones to form an expressive composition; one that involves combi-
nations of pitch, timbre, rhythm, dynamics, tempo, texture, melody and harmony. Putting these
elements together in various ways creates a huge diversity of music – from African drumming to
classical music. Some of these features control acoustic structure of the sound wave, especially
the regularity or rate of repetition. For example, duration refers to the length of the tone, while
dynamics refers to how loud or quiet a note is.

Music genres are categories that have arisen through a complex interplay of cultures, artists,
and market forces to characterize similarities between compositions and organize music collec-
tions. Generally, no universal genre taxonomy exists; the boundaries between genres remain
blurred, making the problem of music genre classification a nontrivial task. We consider a genre
as a category consisting of songs sharing certain aspects of musical characteristics.

Deep neural networks, and in particular those trained in an unsupervised way such as AEs
(autoencoders) or GANs (generative adversarial networks), have shown nice properties to extract
latent representations from large and complex datasets. β-VAEs (β-variational autoencoders) can
be seen as a probabilistic autoencoders that deliver a parametric model of the data distribution.
These models encourage the latent coefficients to be mutually orthogonal and lie on a similar
range. Such properties may be of potential interest for using the extracted latent coefficients as
control parameters for a music generation or classification tasks.

By projecting the signal data from the signal space into a low-dimensional latent space (en-
coding or embedding) using a β-VAE model, we believe it is possible to achieve a high correlation
between the extracted dimension coefficients and the observed properties of the data (i.e., genre).
In our work, we investigate several approaches to encode unsupervised representations learnt on
music samples to classify its genre.

1https://github.com/mdeff/fma
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2 Related Work

Engel et al. [1] introduced NSynth, an audio synthesis method that is based on a time-domain
autoencoder inspired from the WaveNet speech synthesizer [2]. The authors investigated the use
of this model to find a high-level latent space well-suited for interpolation between instruments.
Their autoencoder is conditioned on pitch and is fed with raw audio from their large-scale multi-
instrument and multi-pitch database (the NSynth dataset). This approach led to promising
results but has a high computational cost.

Roche et al. [3] presented a study investigating the use of non-linear unsupervised dimension-
ality reduction techniques (i.e., AEs, DAEs, LSTM-AEs, VAEs and PCA) to compress a music
dataset into a low-dimensional representation which can be used in turn for the synthesis of new
sounds. Their experiments were also conducted on the NSynth dataset.

Both of these studies are based on short samples from individual instruments while we are
focusing on samples drawn from fully-composed and instrument-rich song samples. Our goals
differ since we are trying to capture information that is more beneficial for the classification of
genre (note structure, rhythm and melodies rather than tone color or notes that can be classified
as single-instrument features). Nonetheless, this line of work has shown interesting preliminary
results; as well as we were inspired by some of the techniques and suggestions found in their
work which we have utilized and found useful in our project.

Kim et al. [4] utilized a transfer learning framework, learning artist-related information
that was used at inference time for genre classification. This work differs from ours since they
explore additional features for the purpose of genre classification only, without considering a
dense representation of the data that can be used for reconstruction. We aim to use a latent
representation that is ”reconstructable” and can be used for the task of genre classification.

3 Dataset

A labeled dataset was used for training and testing our models. The dataset was originally
constructed from the Free Music Archive (FMA), an interactive library of high-quality, legal
audio downloads directed by WFMU2. The FMA provides as much as 343 days of Creative
Commons-licensed audio from 106,574 tracks from 16,341 artists and 14,854 albums, arranged
in a hierarchical taxonomy of 161 genres. It provides full-length and high-quality audio, pre-
computed features, together with track- and user-level metadata and tags. For the purpose of
our project we used a subset of the data (fma small.zip) that includes 8,000 tracks of 30s
covering 8 balanced genres.

4 Data Pre-processing

Prior to setting our models and experiments, we performed several steps to pre-process the data
and reduce the complexity of our task.

In sound processing, the Mel Spectrogram make up a representation of the short-term power
spectrum of a sound. Mathematically speaking, it is the result of some non-linear transformation
of the frequency scale. In order to generate the Mel Spectrogram we first separate the audio
signals to windows and compute the FFT (Fast Fourier Transform) for each window to transform
from the time domain to the frequency domain. Next, we generate the Mel-scale by taking the
entire frequency spectrum, and separating it into evenly spaced frequencies. We then decompose
the magnitude of the signal into its components, corresponding to the frequencies in the Mel-
scale for each window. Using the amplitudes of the resulting spectrum allows us to create a
representation of the data that is more close to how the human’s auditory system operates.

Additionally, for computation-cost reasons, we split the music files into smaller file chunks
with equal length. This causes the recurrent layers to have shorter sequences to process. Due
to fixed length of the inputs, the loss function is significantly simpler (handling variable length
sequences in a batch requires additional masking in the loss function).

2https://wfmu.org/
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5 Architecture

Figure 1: Naive Seq2Seq archi-
tecture

As part of our study, we investigate several state-of-the-art ar-
chitectures applied on music samples, including naive Seq2Seq
in subsection 5.1, step-based β-VAE in subsection 5.2, and
Wavenet in subsection 5.4. In addition to using raw music files,
we have an additional Seq2Seq model using Mel Spectrogram
of the data in the music sample file as input in subsection 5.3.

5.1 Naive Seq2Seq

As our first model, we used the naive sequence-to-sequence ar-
chitecture [5]. Seq2Seq architecture is about training models to
convert a sequence from one domain (e.g. a source language)
to a sequence in another domain (e.g. a target language). In
our work, we used the Seq2Seq as an autoencoder where the
source and target sequences are the same and the model’s task
is to learn a latent representation in its bottleneck for the music
sample, which is here processed as a sequence in time domain.

Our Seq2Seq model (depicted in Figure 1) consists of two
GRU (Gated Recurrent Unit) layers. The first GRU works as
the encoder to go from the raw music sample to the latent
bottleneck representation in the middle. The decoder consists of the second GRU layer and
a linear layer that starts from the latent representation and generates the input music sample
(one sample at a time). Additionally, to improve the convergence, we trained our model using
the ”teacher forcing” method.

We trained our model with three hyperparameter setups: 1) GRUdim = Zdim = 8, 2)
GRUdim = Zdim = 16, and 3) GRUdim = Zdim = 32. However, we did not notice a signifi-
cant improvement in any over the rest.

5.2 Step-based β-VAE

Our step-based β-VAE is inspired by the original β-VAE model that was used for images in HW3.
The Mel-scale Spectrogram after preprocessing has the shape of (B,L,C) where B is batch size,
L is the length of the signal and C is the number of components. In this model, we consider
each time step in the spectrogram as one reconstructing sample with the shape of (C, 1). In the
encoder module, we use multiple Conv1D layers to compress the input vector to our latent vector
z and then use multiple Conv1DTranspose layers to reconstruct the original signal. Finally, all
of the reconstructed timesteps will be concatenated into the final spectrogram. Figure 2 shows
the overview of our step-based β-VAE model. The dimension of the latent variable was 100.

Figure 2: Step-based VAE model

5.3 Seq2Seq Autoencoder on Mel Spectrogram

In this sequence to sequence autoencoder (Seq2Seq-AE), we use an LSTM model to transform
the Mel Spectrogram of the samples to a vector of size 512, we then use another LSTM model
to reconstruct the original Mel Spectrogram from the vector (as depicted in Figure 3). The
objective function is the reconstruction loss (Mean Square Error) between the original and the
reconstructed Mel Spectrogram.
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5.4 Wavenet

Figure 3: LSTM autoencoder
architecture

Raw audio samples contain an enormous amount of informa-
tion about the songs. We have to use approximately 500,000
data points to represent 30 seconds. Thus, it would be hard for
a model to capture the long dependency between data points
in a very long sequence without lots of data labels. In order
to address this, we use a Wavenet model [2] that is trained on
raw audio points to predict the next point: P (xt|x1, ..., xt−1).
Figure 4 shows the overview of the Wavenet architecture that
we use, which is similar to the original model. In addition to
the raw audio samples, we also condition the input distribution
on the Mel Spectrogram to help the prediction. The Mel Spec-
trogram is transformed through a list of upsampling layers to
make it match the length of the audio sequence.

After training, the outputs of the layer before the prediction
layer (the last layer) contain information that assists predict-
ing P (xt|x1, ..., xt−1). Hence, they can be used as embedding
vectors or latent representations of data points. The embed-
ding vectors should capture the long-range dependency of the
current data point with its previous points, which is the desired
property. To use the embedding vectors in classifying music genres, a common choice in the NLP
community is to average those vectors. Training a Wavenet model is hard and time-consuming
due to the enormous amount of dataset. It takes more than 7 days to train just 50 epochs on
the FMA small dataset. Therefore, we have not been able to report the result of the Wavenet
model as to the time of the publication of this report.

6 Experiments

6.1 Supervised Genre Prediction

Figure 4: Wavenet architecture

In this experiment, we first train each model to learn and extract
latent representations of a song. Then, we train a classifier
(Random Forest classifier of 200 estimators and max depth of
20 or a Logistic Regression classifier) to predict genres from the
latent representations.

We report the accuracy of different models in Table 1. Note
that we also trained a supervised CNN model directly on the
Mel Spectrogram with labeled data as a baseline (first row).
Even though the accuracies of the step-based β-VAE and the
Seq2Seq-AE are around 0.3, their performance is only 0.1 less
than the supervised model and higher than a random guess (0.125).

Table 1: Accuracy of different models

Model Train on Train accuracy Test accuracy
Supervised CNN data 0.58 0.43

Step-based β-VAE latent 0.95 0.30
Seq2Seq-AE-Mel latent 0.99 0.32

Naive Seq2Seq-AE latent 0.85 0.45

6.2 Reconstruction

We also report our reconstruction error to evaluate the performance of our representation learning
models (Table 2). The two models have reasonable reconstruction error. However, the Seq2Seq-
AE model has a much higher error than the step-based β-VAE model. One possible reason is that
the LSTM model does not work well with long sequences, which is well known in the machine
learning community.
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Table 2: Reconstruction error of different models

Model Reconstruction Error
Seq2Seq-AE 0.66

Step-based β-VAE 0.03

6.3 Latent Space Visualization

We show the t-SNE charts of the latent spaces with regard to the genre labels of two models:
Seq2Seq-AE and β-VAE.

(a) Seq2Seq-AE latent space (b) β-VAE latent space

Figure 5: Latent space of representation learning models

(a) Instrumental genre (b) Hip-hop genre

Figure 6: Latent space of two genres: Hip-hop and Instrumental

From Figure 5a, we can see that there are two genres that are quite clustered together in
the Seq2Seq-AE latent space: hip-hop (brown) and instrumental (purple). Details of these two
genre are shown in Figure 6. On the other hand, it is clearly that our β-VAE model still need
to be tuned until it is ready for the genre classification task.

7 Discussion and Conclusion

Training an autoencoder so that it captures a meaningful representation of the input is difficult.
Our experiments have shown that capturing a latent representation of a sequence-based structures
like songs are much more difficult compared to images. Moreover, it is hard to disentangle
songs’ latent space into components such as genres, pitches, rhythm since they are correlated
with others. In our proposed models, there are lots of model hyper-parameters to fine tune
in NN based models, including learning rate, weight decay, momentum, and other forms of
regularization which may be subject of future studies, however our results show that their effect
are not significant. It must be noted that we cannot disregard the fact that the hyper-parameters
chosen for the models were probably inappropriate. Further work is needed to examine how these
models might be improved.
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