

Knowledge Graph Embeddings

Basel Shbita

INF 558/CSCI 563: Building Knowledge Graphs Spring 2020, University of Southern California

*** Some of the slides were provided by:** Jay Pujara, Mayank Kejriwal, Luna Dong, Christos Faloutsos, Andrey Kan, Jun Ma, Subho Mukherjee, Sebastian Riedel, Antoine Bordes

Agenda

➡ • Motivation

- Tensors
- Graphs
- Embeddings
- Problem Definition
- Graph Embedding
- Tensor Embedding
- Knowledge Graph Embedding

- e.g., Time-evolving graphs
- What is 'normal'? 'suspicious'?
 - Groups?

- e.g., MultiView Graph
- What is 'normal'? 'suspicious'?
 - Groups?

- e.g., Knowledge Graphs
- What is 'normal'? 'suspicious'?
 - Groups?

Graphs over time -> tensors!

- Problem #1:
 - Given who calls whom, and when
 - Find patterns / anomalies

Embedding

- Mapping of discrete variable to a vector of continuous numbers
- Low-dimensional
- Very popular for documents, graphs, words...

Embedding

• Embeddings are not a 'new' invention... topic models are an early example still widely used

Problem Definition

• Given entities & predicates, find mappings

Problem Definition

• Given entities & predicates, find mappings

Agenda

- Motivation
- ➡ Graph Embedding
 - SVD
 - Deep Graph
 - Tensor Embedding
 - Knowledge Graph Embedding

Familiar embedding: SVD

Familiar embedding: SVD

 $\mathbf{u_2}$

u₁

SVD as embedding

SVD as embedding

Deep Graph Embeddings

- DeepWalk
- Node2Vec - Skip-gram
- Metapath2Vec _
- LINE
- UltimateWalk
- AutoEncoder
- Struc2Vec
- GraphSAGE
- GCN
- ...

Skip-gram

- Borrowed from work on language model
- Sample a set of paths with random walk from node v_i
 - min $-\log \sum_{v_j \in N(v_i)} P(v_j | v_i)$

•
$$P(v_j | v_i) = \frac{\exp(v_i v_j)}{\sum_{v_k \in |V|} \exp(v_i v_k)}$$

- Solved with
 - Hierarchical Softmax (DeepWalk)
 - Negative Sampling (Node2Vec)

Deep Graph Embeddings

- DeepWalk
- Node2Vec
- Metapath2Vec
- LINE
- UltimateWalk
- AutoEncoder
- Struc2Vec
- GraphSAGE
- GCN

• . . .

Accheterogenous graph1st order + 2nd order proximitykclosed form, unifies DeepWalk and Node2Vecreconstruct W, similar to SVDfocuses on structural similarity''inductive'', sample and aggregateinteresting! borrowed the idea from CNN

Embedding can help with...

- Reconstruction / Fact checking
 - Triples completion
- Classification
 - Triples classification
- 'Featurizing'
 - (Link prediction)
 - (Recommendation)

Example: Reconstruction of (2,4)

Agenda

- Motivation
- Graph Embedding
- ➡ Tensor Embedding
 - Pairs and Relations as Matrix
 - Tensor Formulation of KG
 - Knowledge Graph Embedding

"Distant" Supervision

John was born in Liverpool, to Julia and Alfred Lennon.

No direct supervision gives us this information. Supervised: Too expensive to label sentences Rule-based: Too much variety in language Both only work for a small set of relations, i.e. 10s, not 100s

Relation Extraction as a Matrix

John was born in Liverpool, to Julia and Alfred Lennon.

Matrix Factorization

Training: Stochastic Updates

- Pick an observed cell, R(i, j):
 - Update \mathbf{p}_{ij} & \mathbf{r}_R such that R(i,j) is higher
- Pick any random cell, assume it is negative:
 - Update \mathbf{p}_{xy} & $\mathbf{r}_{R'}$ such that R'(x, y) is lower

Relation Embeddings

Embeddings ~ Logical Relations

Relation Embeddings, r

- Similar embedding for 2 relations denote they are paraphrases
 - isMarriedTo(X,Y), spouseOf(X,Y)
- One embedding can be contained by another
 - $r(topEmployeeOf) \subset r(employeeOf)$
 - $\bullet \ topEmployeeOf(X,Y) \rightarrow employeeOf(X,Y)$
- Can capture logical patterns, without needing to specify them!

Entity Pair Embeddings, p

- Similar entity pairs denote similar relations between them
- Entity pairs may describe multiple "relations"
 - independent foundedBy and employeeOf relations

Similar Embeddings

similar underlying embedding

Successfully predicts "Volvo owns percentage of Scania A.B." from "Volvo bought a stake in Scania A.B."

Implications

X historian at $Y \rightarrow X$ professor at Y

Learns asymmetric entailment:

PER historian at UNIV \rightarrow PER professor at UNIV But,

PER professor at UNIV \rightarrow PER historian at UNIV

Tensor Formulation of KG

Factorize that Tensor

$$S(r(a,b)) = f(\mathbf{v}_r, \mathbf{v}_a, \mathbf{v}_b)$$

PARAFAC: as embedding

- 'Merkel': i-th subject vector: (1,0,0)
- 'Germany': j-th object vector: (1,0,0)
- 'is_leader': k-th verb vector: (1,0,0)

Reconstruction

- 'Merkel': i-th subject vector: $\vec{s} = (1, 0, 0)$
- 'Germany': j-th object vector: $\vec{o} = (1, 0, 0)$
- 'is_leader': k-th verb vector: $\vec{v} = (1, 0, 0)$

• A:
$$x_{i,j,k} = \sum_{h=1}^{3} s_{i,h} o_{j,h} v_{k,h}$$

- Intuitively:
 - s,v,o: should have common 'concepts'

Agenda

- Motivation
- Graph Embedding
- Tensor Embedding
- ➡ Knowledge Graph Embedding
 - Triple Scoring
 - Addition
 - Multiplication
 - Loss
 - Applications

Knowledge Graph Embedding

- Triple scoring: what is the relationship among sub (h), pred (r), and obj (t)?
 - Addition: h + r = ?= t
 - Multiplication: $h \circ r = ?= t$
- Loss: what shall we optimize?
 - Closed-world assumption
 - Open-world assumption

- Addition: $\mathbf{h} + \mathbf{r} = ?= \mathbf{t}$
 - TransE
 - score(h,r,t) = $|| h+r-t ||_{1/2}$

TransE

'Merkel':
$$\vec{h} = (1, 0, 0)$$

'Germany': $\vec{t} = (1, 1, 0)$
'is_leader': $\vec{r} = (0, 1, 0)$
score (h, r, t) = $\cdot | | \vec{h} + \vec{r} - \vec{t} | |_{1/2} = 0$

'Merkel': $\vec{h} = (1, 0, 0)$ 'Beatles': $\vec{t'} = (0, 0, 1)$ 'plays_bass': $\vec{r'} = (0, 0, 1)$ *score* (h, r, t) = $- || \vec{h} + \vec{r'} - \vec{t'}||_{1/2} = -1$

- Addition: $\mathbf{h} + \mathbf{r} = ?= \mathbf{t}$
 - TransE
 - score(h,r,t) = $|| h+r-t ||_{1/2}$
 - What if multiple objects apply??

Entity and Relation Space

- Addition: $\mathbf{h} + \mathbf{r} = ?= \mathbf{t}$
 - TransE
 - score(h,r,t) = $|| h+r-t ||_{1/2}$
 - TransH
 - project to relation-specific hyperplanes

Entity and Relation Space

- Addition: $\mathbf{h} + \mathbf{r} = ?= \mathbf{t}$
 - TransE
 - score(h,r,t) = $|| h+r-t ||_{1/2}$
 - TransH
 - project to relation-specific hyperplanes
 - TransR
 - translate to relation-specific space

- Addition: $\mathbf{h} + \mathbf{r} = ?= \mathbf{t}$
 - TransE
 - score(h,r,t) = $|| h+r-t ||_{1/2}$
 - TransH
 - project to relation-specific hyperplanes
 - TransR
 - translate to relation-specific space
 - \bullet Many simplifications of TransH and TransR
 - STransE is reported to be the best in Dat Quoc Nguyen. An overview of embedding models of entities and relationships for knowledge base completion

$$S(r(a,b)) = -\|\mathbf{e}_a\mathbf{M}_r + \mathbf{R}_r - \mathbf{e}_b\mathbf{M}_r\|_2^2$$

Triple Scoring - Multiplication

- Multiplication: $h \circ r = ?= t$
 - RESCAL: score(h,r,t) = $\mathbf{h}^{\top} \mathbf{W}_{r} \mathbf{t}$

Too many parameters?!

Triple Scoring - Multiplication

- Multiplication: $h \circ r = ?= t$
 - RESCAL: score(h,r,t) = $\mathbf{h}^{\top} \mathbf{W}_{r} \mathbf{t}$
 - DistMult: score(h,r,t) = h[⊤]diag(r)t Simplify RESCAL by using a diagonal matrix

RESCAL

'Merkel': $h = (1 0)^{T}$ 'Germany': $t = (0 1)^{T}$ 'is_leader': $W_r = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ score (h, r, t) = $h^{T}W_r t$ = $\Sigma(h \otimes t) \odot W_r = 1$

DistMult

'Merkel': $h=(1, 0)^{T}$ 'Germany': $t = (1, 0)^{T}$ 'is_leader': $W_r = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ score (h, r, t) = $h^{T}W_r t$ = $\Sigma(h \odot t) \odot diag(W_r)=1$

Triple Scoring - Multiplication

- Multiplication: $h \circ r = ?= t$
 - RESCAL: score(h,r,t) = $\mathbf{h}^{\top} \mathbf{W}_{r} \mathbf{t}$
 - DistMult: score(h,r,t) = h[⊤]diag(r)t Simplify RESCAL by using a diagonal matrix
 - Cannot deal with asymmetric relations!!
 - ComplEx: score(h,r,t) = Re(h[⊤]diag(r)t) Extend DistMult by introducing complex value embedding, so can handle asymmetric relations

ComplEx

• h = R(h) + iI(h), t = R(t) + iI(t), r = R(r) + iI(r)

•
$$h \odot \overline{t} = (R(h) + iI(h)) \odot (R(t) + iI(t))$$

= $R(h) \odot R(t) + I(h) \odot I(t)$
+ $i(I(h) \odot R(t) - R(h) \odot I(t))$

•
$$Re\{(h \odot \overline{t}) \odot r\} = R(h) \odot R(t) \odot R(r)$$

+ $I(h) \odot I(t) \odot R(r)$
+ $R(h) \odot I(t) \odot I(r)$
- $I(h) \odot R(t) \odot I(r)$

ComplEx

•
$$score(h, r, t) = \sum Re\{(h \odot \overline{t}) \odot r\}$$

 $= \sum R(h) \odot R(t) \odot R(r) \implies DistMult$
 $+\sum I(h) \odot I(t) \odot R(r)$
 $+\sum R(h) \odot I(t) \odot I(r)$
 $-\sum I(h) \odot R(t) \odot I(r)$
• $\neq score(t, r, h) \implies Asymmetry$

Triple Scoring - Multiplication

- Multiplication: $h \circ r = ?= t$
 - RESCAL: score(h,r,t) = $\mathbf{h}^{\top} \mathbf{W}_{r} \mathbf{t}$
 - DistMult: score(h,r,t) = \mathbf{h}^{\top} diag(r)t
 - ComplEx: score(h,r,t) = $\operatorname{Re}(\mathbf{h}^{\top}\operatorname{diag}(\mathbf{r})\mathbf{t})$
 - ConvE: Use convolutional NN to reduce parameters

- Reduce parameters
- Certain flexibility

DistMult is light-weight, and good in practice.

Loss

• Closed world assumption: square loss

$$L = \sum_{h,t \in E, r \in R} (y_{h,r,t} - f(h,r,t))^2$$

• Open world assumption: triplet loss

$$L = \sum_{T+} \sum_{T-} max(0, \gamma - f(h, r, t) + f(h', r', t'))$$

OWA works best

KGE Applications

• Learn embeddings from IMDb data and identify WikiData errors, using DistMult

Subject	Relation	Target	Reason	
The Moises Padilla Story	writtenBy	César Ámigo Aguilar	Linkage error	
Bajrangi Bhaijaan	writtenBy	Yo Yo Honey Singh	Wrong relationship	
Piste noire	writtenBy	Jalil Naciri	Wrong relationship	
Enter the Ninja	musicComposedBy	Michael Lewis	Linkage error	
The Secret Life of Words musicComposedBy		Hal Hartley	Cannot confirm	
•••	••••	•••	••••	

Comparing Real KGs with Benchmarks

- Examine statistics of real KGs and derived benchmarks
- Two metrics for capturing data distribution and sparsity:
 - entity & relation entropy (EE/RE) measure diversity of facts
 - entity & relation density (ED/RD) concentration of facts

	KG	Triples	Entities	Rels	EE	RE	ED	RD	Prec
Real	Freebase	1B	124M	$15\mathrm{K}$	14	3.2	16	68K	1
	NELL1000	92M	4.8M	435	21	4.9	19	210K	0.45
	WordNet	380K	116K	27	21	2.3	7	21K	1
Bench.	FB15K	$592 \mathrm{K}$	15K	1.3K	16	5.1	79	440	1
	NELL165	1M	820K	221	25	1.5	3	4.7K	0.35
	WN18	151K	40K	18	19	2.1	7	8.4K	1

Comparing Real KGs with Benchmarks

	KG	Triples	Entities	\mathbf{Rels}	ÐÐ	RE	ED	RD	Prec
	Freebase	1B	124M	$15\mathrm{K}$	14	3.2	16	68K	1
Rea	NELL1000	92M	4.8M	435	21	4.9	19	210K	0.45
	WordNet	380K	116K	27	21	2.3	7	21K	1
Bench.	FB15K	592K	15K	1.3K	16	5.1	79	440	1
	NELL165	1M	820K	221	25	1.5	3	4.7K	0.35
	WN18	151K	40K	18	19	2.1	7	8.4K	1

Observations:

- Freebase is largest KG with highest RD, but lowest EE
- NELL1000 is diverse (high EE/RE), highest RD, low precision
- WN/WN18 are much smaller, low rels, low RE, low ED
- FB15K has very high ED, very low RD, more diverse than FB
- NELL165 has lowest ED, highest EE, lowest RE, low precision

Do embeddings work for extracted KGs?

- Approach:
 - Evaluate on the NELL knowledge graph, containing millions of candidates extracted from WWW text
- Observations:
 - Baseline (threshold input) wins against embeddings
 - Best results from graphical model (PSL-KGI) using rules & uncertainty
 - More complex embedding methods have the worst performance
- Conclusion:
 - Embeddings have poor performance on sparse & noisy KGs extracted from text

Method	AUC	$\mathbf{F1}$
TransH	0.701	0.783
HolE	0.710	0.783
TransE	0.726	0.783
STransE	0.784	0.783
Baseline	0.873	0.828
PSL-KGI	0.891	0.848

Do embeddings require complete KGs?

- Approach:
 - Remove training data, either in clusters to maintain relation density (stable) or randomly (sparse)
- Observations:
 - All methods perform much worse with sparse KGs relative to stable baseline
 - At 50% removal, stable can outperform sparse by 60%
 - STransE most sensitive, HolE least sensitive to sparsity
- Conclusion:
 - performance quickly degrades with sparsity

HITS@10 for sparsified FB15K

Do embeddings require reliable KGs?

- Approach:
 - Randomly "corrupt" training data by altering subject, predicate, or object
- Observations:
 - corrupt training data is worse than sparse data
 - Deficit between sparse and corrupt remains stable
 - HolE most sensitive, STransE least sensitive to corruption
- Conclusion:
 - Unreliable data harms training more than missing data

When is noisy data worth using?

- Approach:
 - Start with sparse training set and add new training data with differing noise levels
- Observations:
 - All methods receive boost from initial noisy data
 - Enough low noise data can allow recovery
 - Even very noisy data doesn't degrade performance much
- Conclusion:
 - Extending sparse training data with noisy inputs can help performance

Trading off sparse and noisy training data 0.75 🗯 10% noise 20% noise 30% noise 60% noise 4-90% noise Full dataset **Q**).65 10% sparsity 10% corruption Eiltered HITS@ .52 0.5 0.5 0.4 0.35 0.5 1.5 2 2.5 3 ×10⁵ Noisy Triples Added