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Tensors

Scalar Vector Matrix Tensor
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Tensors

e e.g., MultiView Graph

« What 1s ‘normal’? ‘suspicious’
* Groups?




Tensors

* e.g., Knowledge Graphs

« What 1s ‘normal’? ‘suspicious’
* Groups?
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Graphs over time -> tensors!

* Problem #1:

* Given who calls whom, and when
* Find patterns / anomalies
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Embedding

 Mapping of discrete variable to a vector of continuous numbers

 Low-dimensional
* Very popular for documents, graphs, words...
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Embedding

« Embeddings are not a ‘new’ invention... topic models are an
early example still widely used
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Problem Definition

* Given entities & predicates, find mappings
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Problem Definition

* Given entities & predicates, find mappings
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Familiar embedding: SVD




Familiar embedding: SVD




SVD as embedding
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SVD as embedding
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Deep Graph Embeddings

* DeepWalk
« Node2Vec — Skip-gram
* Metapath2Vec _
 LINE

« UltimateWalk

« AutoEncoder

» Struc2Vec
 GraphSAGE

« GCN




Skip-gram

* Borrowed from work on language model
« Sample a set of paths with random walk from node v;

* min —1og ¥y, enwy P 1:)

_ exp(vw))
o P(vj|vi) — kaelVl eXp(Jvivk)

* Solved with
« Hierarchical Softmax (DeepWalk)
« Negative Sampling (Node2Vec)




Deep Graph Embeddings

 DeepWalk
* Node2Vec

* Metapath2Vec

. LINE

+ UltimateWalk
+ AutoEncoder

+ Struc2Veo

“inductive”, sample and aggregate

interesting! borrowed the idea from CNN



Embedding can help with...

* Reconstruction / Fact checking
* Triples completion

 Classification
» Triples classification

* ‘Featurizing’
« (Link prediction)
« (Recommendation)




Example: Reconstruction of (2,4)
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 Knowledge Graph Embedding



“Distant” Supervision

John was born in Liverpool, to Julia and Alfred Lennon.

[: “was born in” John
) Lennon

birthplace

No direct supervision gives us this information.

Supervised: Too expensive to label sentences

Rule-based: Too much variety in language

Both only work for a small set of relations, 1.e. 10s, not 100s

“is native to”

< Barack
‘ birthplace ' Obama

“met the senator from”




Relation Extraction as a Matrix

John was born in Liverpool, to Julia and Alfred Lennon.
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Matrix Factorization
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Training: Stochastic Updates

relations
relations
o 1 - |
/ g p
® R'(z,y) ~ X
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* Pick an observed cell, R(7,7):
* Update p;; & rsuch that R(i7 j) 1s higher
* Pick any random cell, assume it is negative:

« Update Pzy & TR’ such that R'(x, 1) is lower



Relation Embeddings
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Embeddings ~ Logical Relations

Relation Embeddings, r

* Similar embedding for 2 relations denote they are paraphrases

* One embedding can be contained by another

« Can capture logical patterns, without needing to specify them!

Entity Pair Embeddings, p
« Similar entity pairs denote similar relations between them

« Entity pairs may describe multiple “relations”
* independent and relations



Similar Embeddings

similar underlying embedding
X own percentage of Y X buy stake inY
Time, Inc

Amer. Tel. and Comm.

Volvo
Scania A.B.

similar embedding

Campeau
Federated Dept Stores

Apple
HP

Successfully predicts “Volvo owns percentage of Scania A.B.”
from “Volvo bought a stake in Scania A.B.”



Implications

X historian at Y - X professor at Y

X professoratyY X historian aty

Kevin Boyle
(Freeman,Harvard) Ohio State
- (Boyle,OhioState)
R. Freeman
Harvard

Learns asymmetric entailment:

PER historian at UNIV — PER professor at UNIV
But,

PER professor at UNIV > PER historian at UNIV



Tensor Formulation of KG
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Factorize that Tensor

|E|

|E]




PARAFAC: as embedding

« ‘Merkel’: i-th subject vector: (1,0,0)
* ‘Germany’: j-th object vector: (1,0,0)
« is_leader’: k-th verb vector: (1,0,0)

leaders musicians athletes

k: ‘leader’ , o , /
? . h.‘.. L)

i: ‘Merkel’

j: ‘Germany’



Reconstruction

* ‘Merkel’: 1-th subject vector:
* ‘Germany’: j-th object vector:
* 1s leader’: k-th verb vector:
Al X = Yh=1 Sin Oj n Vk,n

 Intuitively:

* 3,v,0: should have common ’concepts’
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Knowledge Graph Embedding

* Triple scoring: what is the relationship among sub (h), pred (r), and obj (t)?
e Addition: h+r=?=t
* Multiplication: hor =?=1t¢

* Loss: what shall we optimize?
* Closed-world assumption
* Open-world assumption



Triple Scoring - Addition

e Addition: h +r=7=1t
e TransEk 'y
 score(h,r,t) =— | |h+rt| |5 h

-
Entity and Relation Space




Transk

‘Merkel’: l_{:(l, 0, 0)

‘Germany’: t=(1, 1, 0)
‘is_leader’: #=(0, 1, 0)
score(h,r,t)=-|| h+ 7 — | | 10=0

‘Merkel fl=(1, 0, 0)
‘Beatles™ F=(O, 0, 1)
‘plays_bass’ 7=(O, 0, 1)
score(h, 1, t) =-| | h+r —t) | 190 = -1



Triple Scoring - Addition

 Addition: h +r=?=t¢t
 TransE 'y

« score(h,r,t) =— | |htrt]| |1 h

 What if multiple objects apply??

directed
\

>

‘ E:E Entity and Relation Space




Triple Scoring - Addition

e Addition: h+r=?=t
 TransE
« scoreth,r,t) =— | |h+rt] |1
 TransH

» project to relation-specific hyperplanes

Entity and Relation Space



Triple Scoring - Addition

e Addition: h +r=7=1t
e TransEk
« scoreth,r,t) =— | |htrt]| |15

* TransH

» project to relation-specific hyperplanes

e TransR

» translate to relation-specific space

E

Entity Space

A
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r
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Triple Scoring - Addition

e Addition: h+r ==t

* TransE

 score(h,r,t) =— | |h+rt| |5
* TransH

» project to relation-specific hyperplanes
* TransR

» translate to relation-specific space

 Many simplifications of TransH and TransR

* STranskE is reported to be the best in
Dat Quoc Nguyen. An overview of embedding models of entities and
relationships for knowledge base completion



Triple Scoring - Addition
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Triple Scoring - Multiplication

 Multiplication: hor =?=1
« RESCAL: score(h,r,t) =hTW.t
Too many parameters?!

J-thentity -~

S S e[S
entity m'\\
® |

otk 1 x
relation

k-th
" relation




Triple Scoring - Multiplication

 Multiplication: hor =?=1
« RESCAL: score(h,r,t) =hTW.t

 DistMult: score(h,r,t) = hTdiag(r)t
Simplify RESCAL by using a diagonal matrix



RESCAL DistMult

‘Merkel’”:  h= ‘Merkel’:  h=(1, 0)"

lGermany': t= lGermany’: t=(1r )T
D

‘is_leader’: WF[ 's_leader’: W= 0 ]

score (h, r, t) = score (h, r,t) =hTW.t
=5(h@t)OW,=1 =2(hOt)Odiag(W,)=1



Triple Scoring - Multiplication

 Multiplication: hor =?=1

« RESCAL: score(h,r,t) =hTW.t

 DistMult: score(h,r,t) = hTdiag(r)t
Simplify RESCAL by using a diagonal matrix

« Cannot deal with asymmetric relations!!

« ComplEx: score(h,r,t) = Re(h"diag(r)t)
Extend DistMult by introducing complex value embedding,
so can handle asymmetric relations



ComplEx

eh=R((h) +il(h), t=R()+il(t), r=R(>E)+il()

*hOt=(R(h)+il(h) O (R() +il(t))
=R(W) O R() +1(h) O I(t)
+i(I(h) O R(t) — R(h) O I(1))

*Re{(h©Ot) O 1} =R(h) O R(t) © R(1)
+1(h) O I(t) O R(r)
+R(h) O I1(t) O I(r)
—I(h) O R(t) © I(r)



ComplEx

« score(h,r,t) =YRe{(hO t) O 1}

=YR(h) O R(t) ® R(r) = DistMult

+¥1(h) O 1(t) O R(r)’

+YR(W) O I(t) OI(r) |

—LI(h) OR(E) O I(r)

« + score(t,r, h)

—> Asymmetry



Triple Scoring - Multiplication

ComplEx and ConvE have
 Multiplication: hor =?=1 state-of-the-art results

« RESCAL: score(h,r,t) =hTW.t D Cndehre

* DistMult: score(h,r,t) = hTdiag(r)t DistMult is light-weight,
« ComplEx: score(h,r,t) = RethTdiag(r)t) and good in practice.

* ConvE: Use convolutional NN to reduce parameters

Projection to
Embeddings "Image” Feature maps embedding Logits Predictions
dimension

Matrix
multiplication
——————
with
entity matrix

Fully connected
projection
e

Logistic
sigmoid
—f

@ooe

al Concat Convaolve
— —
rel

Embedding Feature map Hidden layer
dropout (0.2) dropout (0.2) dropout (0.3)

000000000000
coooooo000000
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Loss

* Closed world assumption: square loss

L= ) Onre—fh1,0)

h,teE,r€R

* Open world assumption: triplet loss

L= Z Z max(0,y — f(h,r,t) + f(h',r, t))

OWA works best

T+ T-




KGE Applications

* Learn embeddings from IMDb data and identify
WikiData errors, using DistMult

Subject Relation Target Reason
The Moi i . ssar Ami .
e Moises Padilla writtenBy César Amlgo Linkage error
Story Aguilar
Bajrangi Bhaijaan writtenBy Yo Yc? Honey Wrong relationship
Singh
Piste noire writtenBy Jalil Naciri Wrong relationship
Enter the Ninja musicComposedBy Michael Lewis Linkage error
Th t Life of : :
e Secret Life o musicComposedBy Hal Hartley Cannot confirm

Words




Comparing Real KGs with Benchmarks

 Examine statistics of real KGs and derived benchmarks

* Two metrics for capturing data distribution and sparsity:
* entity & relation entropy (EE/RE) — measure diversity of facts
* entity & relation density (ED/RD) — concentration of facts

KG Triples Entities Rels EE RE ED RD Prec
_ Freebase 1B 124M 15K 14 3.2 16 68K 1
é NELL1000 92M 4.8M 435 21 4.9 19 210K 0.45
WordNet 380K 116K 27 21 2.3 7 21K 1
= FB15K 592K 15K 1.3K 16 5.1 79 440 1
| NELL165 IM 820K 221 25 15 3 47K 035
= WN18 151K 40K 18 19 2.1 7 8.4K 1




Comparing Real KGs with Benchmarks

KG Triples Entities Rels EE RE ED RD Prec
| Freebase 1B 124M 15K 14 32 16 68K 1
§ NELL1000 92M 4.8M 435 21 49 | 19 210K 0.45

WordNet 380K 116K 27 21 23 7 21K 1
| FBISK 592K 15K 1.3K 16 51 79 440 1
£| NELL165 IM 820K 221 25 15 3 47K 035
Bl wNis 151K 40K 18 19 21 7 84K 1
Observations:

* Freebase 1s largest KG with highest RD, but lowest EE

« NELL1000 is diverse (high EE/RE), highest RD, low precision
« WN/WN18 are much smaller, low rels, low RE, low ED
 FB15K has very high ED, very low RD, more diverse than FB
« NELL165 has lowest ED, highest EE, lowest RE, low precision



Do embeddings work for extracted KGs?

» Approach:

 Evaluate on the NELL knowledge graph,
containing millions of candidates extracted from

WWW text

e Observations:

 Baseline (threshold input) wins against
embeddings

 Best results from graphical model (PSL-KGI) using
rules & uncertainty

* More complex embedding methods have the worst
performance
* Conclusion:

* Embeddings have poor performance on sparse &
noisy KGs extracted from text

Method AUC F1

TransH 0.701 0.783
HolE 0.710 0.783
TransE 0.726 0.783
STransE 0.784 0.783
Baseline 0.873 0.828
PSL-KGI 0.891 0.848




Do embeddings require complete KGs?

» Approach:

* Remove training data, either in clusters to
maintain relation density (stable) or
randomly (sparse)

e Observations:

* All methods perform much worse with
sparse KGs relative to stable baseline

« At 50% removal, stable can outperform
sparse by 60%

 STransE most sensitive, HolE least
sensitive to sparsity

 Conclusion:
* performance quickly degrades with sparsity

I-!)IS@1‘0 for sparsified FB15K

| @TransE (stable)’%z.
| @ TransH (stable)

v,
Py,

L 4
OO.G

.
@HoIE (stable) '{&:t . R~
- #STransE (stable) % .'ﬂ A
o @, -
| ©TransE (sparse) ° o TN
DTransH (sparse) .,
| @HolE (sparse)

#A\STransE (sparse)

0.5 . 1 1.5 2 %.5
Triples Removed *°



Do embeddings require reliable KGs?

* Approach: HITS@10 for corrupted FB15K
* Randomly “corrupt” training data by %,
altering subject, predicate, or object AN 2o,
hd . ~ ? &, .%
* Observations: S . ~:’.~&“:~9,';~ -
* corrupt training data is worse than = \Q\%ﬁ; 0l
sparse data 3-5 'g..',"%:.., ’
. Deficit between sparse and corrupt o, OTranst 522222\3" So ot *:,,;':
remains stable O At e e
* HolE most sensitive, STransE least (103 §Tranti ooy ~
sensitive to corruption %S?Eéﬁ@'{?é’r?um) B
0.2 :
hd . 0 %.5
* Conclusion: Trlples Impacted <10

 Unreliable data harms training more than
missing data



When 1s noisy data worth using?

¢ Approachi Trading qff sparse apd noigy training data

» Start with sparse training set and add new |
training data with differing noise levels

o
3

Q.65
e Observations: S ot
. o . =
 All methods receive boost from initial noisy Toss|
data 8,
. 2
* Enough low noise data can allow recovery = ol

* Even very noisy data doesn’t degrade
performance much

o
~
:

o Py

0.35

 Conclusion: * Noisy Triples Added 1"
» Extending sparse training data with noisy
inputs can help performance



