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Abstract

Systems that automatically recognize a speaker are increasingly important in human-

computer interaction because speech communication has always been and will continue to

be the dominant mode of human social bonding and information exchange. This paper in-

vestigates the use of Gaussian mixture models (GMMs) for robust text-independent speaker

identification. The experiments performed in this research examine several aspects and

parameters of GMM usage: algorithmic issues, amount of training data, modeling differ-

ent languages, and small and large population performance. We found that increasing the

amount of training data and decreasing the number of speakers improved the accuracy of

text-independent speaker identification using statistical models based on Gaussian mixture

models. There also appears to be a maximum number of Gaussian mixture components

needed to adequately model speakers and achieve good identification performance for differ-

ent amounts of training data.



1 Introduction

From human prehistory to the new media of the future, speech communication has been

and will be the dominant mode of human social bonding and information exchange. In

addition to human-human interaction, this human preference for spoken language commu-

nication finds a reflection in human-machine interaction as well. Most computers operating

systems and applications depend on a user’s keyboard strokes and mouse-clicks, with a dis-

play screen as feedback. Today’s computers lack the fundamental human abilities to speak,

listen, understand, and learn. And even before speech based interaction reaches full ma-

turity, applications in home, mobile and office segments are incorporating spoken language

technology to change the way we live and work.

As speech interaction with computers becomes more pervasive in activities, the usage of

systems that automatically recognize a speaker increases. Primarily, the speech signal con-

veys words or message being spoken. The signal also conveys information about the identity

of the person talking. While the area of speech recognition is concerned with extracting the

message spoken, the area of speaker identification is concerned with extracting the identity

of the person speaking [1]. Success in both tasks, recognition and identification depends on

extracting, modeling and improving the speaker-independent characteristics of the speech

signal which can effectively distinguish one speaker from another.

In this paper, we address the problem of speaker identification. The experiments per-

formed are concerned with text-independent speaker identification which is totally uncon-

strained with respect to the content of the speech, unlike text-dependent speaker identifica-

tion systems that require the speech to be a known and specific phrase.
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2 Background

2.1 Speech Recognition

A source-channel mathematical model is often used to formulate speech recognition problems

[2]. As illustrated in Figure 1, the speaker chooses the source word sequence W that is

delivered to his/her Speech Generator which produces the speech waveform and performs

the speech signal processing component of the speech recognizer [3]. Finally, the speech

decoder aims to decode the acoustic signal X into a word sequence W’, which is hopefully

close to the original word W.

Figure 1: A source-channel model for a speech recognition system [4].

2.2 Speaker Identification

The system determines the identity of a user with statistical models based on Gaussian

mixture models (GMMs) [5]: probabilistic models for density estimation which use a mixture

distribution. The Gaussian mixture speaker model is an implicit segmentation approach to

speaker recognition, providing a probabilistic model of the underlying sounds of a person’s

voice. The use of Gaussian mixture density for speaker identification is motivated by two

interpretations. First, the individual component Gaussians in a speaker-dependent GMM are

interpreted to represent broad acoustic classes. These acoustic classes reflect general speaker-

dependent vocal tract configurations that are useful for modeling speaker identity. Second,
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a Gaussian mixture density is shown to provide a smooth approximation to the underlying

long-term sample distribution of observations obtained from utterances by a given speaker.

2.2.1 Open and Closed Data Sets

In speaker identification, the reference set of known speakers can be of two types: closed or

open [6]. This distinction refers to whether the set contains unknown speakers or not. This

paper is concerned only with closed data sets: those including only known speakers. Closed

set speaker identification is an easier task than open set speaker identification. With closed

set speaker identification the speaker is identified using a nearest neighbor approach, so no

thresholding is needed. In open set speaker identification, on the other hand, the closest

known speaker is not necessarily the actual speaker, so one has to use a pre-determined

threshold to identify samples that are close enough to be deemed to be from the same

speaker.

2.2.2 Extraction of Mel-Frequency Cepstral Coefficients (MFCC)

In sound processing, the Mel-Frequency Cepstral Coefficients (MFCC) collectively make up a

representation of the short-term power spectrum of a sound. MFCCs are extracted from the

speech as follows: First, the speech is sampled at 16 kHz sampling rate and is segmented into

overlapping 20 ms frames every 10 ms, providing 320 samples in a frame. Second, frequency

analysis is done on each frame using a discrete Fourier transform (DFT).

Next, Mel-scale cepstral feature vectors are extracted from the speech frames [7] by tak-

ing the logarithms of the powers at each of the frequencies and then taking the discrete

cosine transform (DCT) of the Mel logarithm powers, as if it were a signal. These trans-

forms are important to numerous applications from lossy compression of audio (where small

high-frequency components can be discarded). Finally, we get the Mel-Frequency Cepstral

Coefficients (MFCCs) which are now the amplitudes of the resulting spectrum [8]. This
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process is illustrated in Figure 2.

Figure 2: Extraction of Mel-Frequency Cepstral Coefficients (MFCC).

2.2.3 Training and Testing

GMMs are classic parametric models used in many pattern recognition applications. A

Gaussian mixture density is a weighted sum of M component densities, as given by the

equation

p(~x|λ) =
M∑
i=1

pibi(~x) (1)

where ~x is a D-dimensional random vector, bi(~x), i = 1, ...,M , are the component densities

and pi, i = 1, ...,M are the mixture weights. Each component density is a D-variate Gaussian

function of the form

bi(~x) =
1

(2π)D/2|Σi|1/2
exp

{
−1

2
(~x− ~µi)

′ Σ−1
i (~x− ~µi)

}
(2)

with mean vector ~µi and covariance matrix Σi. The mixture weights satisfy the constraint

that
∑M

i=1 pi = 1.
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The complete Gaussian mixture density is parameterized by the mean vectors, covariance

matrices and mixture weights from all component densities. These parameters are collectively

represented by the notation

λ = {pi, ~µi,Σi} i = 1, ...,M. (3)

For speaker identification, each speaker is represented by a GMM and is referred to by his/her

model λ.

The Gaussian mixture model can have several different forms depending on the choice

of covariance matrices. The covariance matrix has three different types, including one co-

variance matrix per Gaussian component as indicated in Equation 3 (nodal covariance), one

covariance matrix for all Gaussian components (grand covariance), or a single covariance

matrix shared by all speaker models. In addition, the covariance matrix can be full or di-

agonal. In this paper, nodal, diagonal covariance matrices are primarily used for speaker

models.

There are several methods for estimating the parameters of a GMM, but the maximum

likelihood (ML) [9] estimation is the most well-established one. The goal of ML estimation

is to derive the optimum model parameters that can maximize the likelihood of a certain

GMM. Generally, the model parameters are extracted by the Expectation-Maximization

(EM) algorithm [10].

For speaker identification, a group of S speakers is represented by GMMs {λ1, λ2, ..., λs}.

The objective is to find the speaker model which has the maximum a posteriori probability

for a given observation sequence. Formally,

Ŝ = argmax
1≤k≤S

Pr(λk|X) = argmax
1≤k≤S

p(X|λk)Pr(λk)

p(X)
(4)

where the second equation reflects the application of Bayes’ rule. Assuming a priori equally
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likely speakers (i.e., Pr(λk) = 1
S

) and noting that p(X) is the same for all speaker models,

the classification rule simplifies to

Ŝ = argmax
1≤k≤S

p(X|λk). (5)

Using the assumed independence between observations, the speaker identification system

computes

Ŝ = argmax
1≤k≤S

T∑
t=1

log p(~xt|λk) (6)

in which p(~xt|λk) is given in Equation 1.

The test speech produces a sequence of feature vectors {~x1, ..., ~xt}. The format of the

files used is very simple, each one of them just contains one 60-dimensional vector. When

testing is performed, vectors’ values from the test utterance are compared with all speaker

models. The speaker’s model with the highest likelihood score in a closed set is the one

determined. If the data set is open, a specific percentage value is required.
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3 Data Sets

The experiments performed are primarily conducted using WAV-audio files (*.wav) which

are organized in folders representing different languages:

Folder name Language
ARMSA Arabic / Modern Standard Arabic
DEDE Deutsch / Deutschland
ENUK English / United Kingdom
ESES Español / España
FIPH Filipino / Philippines
FRFR French / France
IDID Indonesian / Indonesia
ITIT Italian / Italy
JAJP Japanese / Japan
KOKR Korean / Korea
MNMN Mongolian / Mongolia
PLPL Polish / Poland
PTPT Portuguese / Portugal
RURU Russian / Russia
THTH Thai / Thailand
UGCN Uyghur / China
VIVN Vietnamese / Vietnam
ZHCN Mandarin Chinese / China

Table 1: A table showing the language spoken in each folder.

Each folder in Table 1 contains a couple of sub-folders (5-14). Each one of the sub-

folders represents different speaker and contains two WAV-audio files: “train.wav,” which

has the audio information needed for the training model, and “test.wav,” which has the

audio information needed for the testing model. The duration of each file is between 30

seconds to 500 seconds, depending on the type of the experiment.

This data set consists 150 speakers, 45% women and 55% men. The speakers’ training

and test files can be used without being separated by language (language-independent) or

can be used within certain language (language-dependent).
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4 Experiments

Determining the number of the components in a mixture needed to model a speaker ade-

quately is an important but difficult problem. There is no theoretical way to estimate the

number of mixture components a priori. For speaker modeling, the objective is to choose

the minimum number of components necessary to adequately model a speaker for good

speaker identification. Choosing too few mixture components can produce a speaker model

which does not accurately model the distinguishing characteristics of a speaker’s distribu-

tion. Choosing too many components can cause over-fitting, which reduces performance

when there are a large number of model parameters relative to the available training data

and can also result in excessive computational complexity both in training and testing. The

models for each speaker were so specific that they didn’t reflect more general characteristics.

The following experiments examine the performance of the GMM speaker identification

system for different model orders with respect to the number of Gaussian component densities

used, amount of training data and number of speakers within specific languages.

4.1 Language-dependent closed speaker set, varying number of

component densities and training speech duration

In the first experiment we assume that the language is already identified and that the problem

is to identify the speaker within that language (language-dependent) while it is known that

the owner of the unknown voice is one of the known speakers; a closed data set. In this

experiment speaker models with 32, 64, 128 and 256 Gaussian component densities were

trained using 30, 60, 120 and 180 seconds of speech. For each speaker model within each

language, the identification test performance was for 60 seconds of speech.
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4.2 Language-dependent closed speaker set, varying number of

speakers for different languages

A language-dependent speaker identification within a closed data set is performed in the

second experiment. In this experiment speaker models with 1, 2, 4, 8, 16, 32, 64, 128 and

256 Gaussian component densities are trained using 180 seconds of speech. For each speaker

model within each language, the identification test performance is for 60 seconds of speech.

The experiment is performed on 3 languages with 6 speakers and each time the number of

speakers is reduced by one. Next, the same experiment is performed on all languages with

5 speakers.

4.3 Language-independent closed speaker set, varying number of

component densities for a large number of speakers

A language-independent speaker identification within a closed data set is performed in the

third experiment. In this experiment speaker models with 1, 2, 4, 8, 16, 32, 64, 128 and 256

Gaussian component densities are trained using 180 seconds of speech and performed on 98

speakers. This experiment is performed in order to give us results for a very large number

of speakers compared to the other experiments that are performed on a small number of

speakers.
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5 Results

5.1 Language-dependent closed speaker set, varying number of

component densities and training speech duration

Amount of Training Data Number of Mixture Components Accuracy (%)

30 sec

32 98.98
64 96.94
128 92.86
256 77.55

60 sec

32 100
64 100
128 100
256 79.59

120 sec

32 100
64 98.98
128 100
256 100

180 sec

32 100
64 100
128 100
256 100

Table 2: GMM identification performance for different amounts of training data and number
of mixture components.

As we expected, with increased training data, identification performance increases (Figure

3). The largest increase in performance occurs when the amount of training data increases

from 60 seconds to 120. Increasing the training data to 180 also improves performance but

with a smaller increment.

Before the experiment was performed, we assumed that increasing the number of the

Gaussian mixture components would make the results more accurate, because more model

parameters are given. But, we were surprised to find out that with increased number of

Gaussian mixture components, identification performance decreases (Figure 4). This is ap-
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Figure 3: Average accuracy as a function of
the training time.

Figure 4: Average accuracy as a function of
the number of mixture components.

parently caused by over-fitting. The models for each speaker were so specific that they did

not reflect more general characteristics.

As we can see in Figure 5, when the training time is 30 seconds, it affects the performance

using any number of Gaussian mixture components. This suggests that more than one minute

of conversational speech is necessary to maintain higher speaker identification performance

and using more training data improves performance at a decreasing rate.

We can also see that when the number of components is 32 and the training data is at

least 60 seconds, it is actually enough to get 100% accuracy for speaker identification within

any language in this closed data set.

Figure 5: Speaker identification performance as a function of the training time for different
number of Gaussian mixture components.
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5.2 Language-dependent closed speaker set, varying number of

speakers for different languages

Number of speakers
Accuracy(%)

FIPH RURU ENUK

6 92.59 79.63 88.89
5 93.65 91.11 90.74
4 95.56 91.67 91.11
3 100 100 92.59
2 100 100 100
1 100 100 100

Table 3: GMM identification performance for different number of speakers within different
languages.

In this experiment, speaker models with different Gaussian component densities were

trained using 180 seconds of speech. As we expected, with increased number of speakers

within the data set, identification performance decreases for all the languages examined

(Figure 6).

Figure 6: Speaker identification performance as a function of a different number of speakers
within different languages.
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As we can see in Figure 7, for a constant number of speakers (5 speakers), speaker

identification performance was different across languages. Uyghur language (China) got the

lowest accuracy percentage from all the languages. English (United Kingdom), Russian,

Vietnamese, Portuguese and Filipino didn’t get high accuracy percentage compared to the

other languages. All of the other languages got 100% accuracy for the same parameters.

This might be caused by the difference in the tone of voice, rhythm, style, pace and accent

between different languages.

Note that this experiment was performed with 15 languages out of 18. The Mongolian,

Thai and Polish languages did not have enough speakers to be used in this experiment.

Figure 7: Speaker identification performance for different languages examined with the same
number of speakers (5 speakers).
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5.3 Language-independent closed speaker set, varying number of

component densities for a large number of speakers

Number of Mixture Components Accuracy (%)

1 98.98
2 98.98
4 98.98
8 98.98
16 100
32 100
64 98.98
128 1.02
256 1.02

Table 4: GMM identification performance for different number of mixture components.

In this experiment speaker models with 1, 2, 4, 8, 16, 32, 64, 128 and 256 Gaussian

component densities were trained using 180 seconds of speech and performed on 98 speakers.

Before the experiment was performed, we assumed that a small number of the Gaussian

mixture components would not be enough to give us high speaker identification accuracy.

But, we were surprised to find out that even the 1 Gaussian which includes 60-dimensional

Mel-cepstral vectors was enough to give us high accuracy.

As we can also see in Table 4 and Figure 8, when we used 16 and 32 Gaussian components,

speaker identification performance was on 100% accuracy, which was also unexpected for a

such a large number of speakers. When the number of Gaussian components was 128 and 256

the accuracy decreased and was very small, which apparently happened because of the large

number of model parameters relative to the available training data, resulting in excessive

computational complexity both in training and testing. This is a classic example of over-

fitting. The models for each speaker were so specific that they did not reflect characteristics

useful for prediction.
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Figure 8: Speaker identification performance as a function of a different number of Gaussian
mixture components for 98 speakers.

6 Conclusion

The experimental evaluation in this paper examined several aspects and parameters using

Gaussian mixture models for text-independent speaker identification. Some observations

and conclusions are:

• Identification performance of the Gaussian mixture speaker model increases with in-

creased amount of training data.

• There appears to be a maximum number of Gaussian mixture components needed to

adequately model speakers and achieve good identification performance for different

amounts of training data, both for a large number of speakers and for a small number

of speakers. Choosing too many components caused over-fitting, where the models for

each speaker were so specific that they did not reflect more general characteristics.

• The Gaussian mixture speaker model’s identification performance increases with de-

creased number of speakers within a specific language.

• Speaker identification performance for various languages was different while using con-

stant parameters. It is likely that it is caused by the difference in the tone of voice,
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rhythm, style, pace and accent between different languages.

The results in this paper indicate that Gaussian mixture models provide a robust speaker

representation for the difficult task of speaker identification.
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